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Predicting conversion from mild cognitive impairment to Alzheimer’s disease 
with multimodal latent factors
Minyu Chang and C. J. Brainerd

Department of Psychology and Human Neuroscience Institute, Cornell University, Ithaca, New York, USA

ABSTRACT
Introduction: We studied the ability of latent factor scores to predict conversion from mild 
cognitive impairment (MCI) to Alzheimer’s disease (AD) and investigated whether multimodal 
factor scores improve predictive power, relative to single-modal factor scores.
Method: We conducted exploratory factor analyses (EFAs) and confirmatory factor analyses (CFAs) 
of the baseline data of MCI subjects in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to 
generate factor scores for three data modalities: neuropsychological (NP), magnetic resonance 
imaging (MRI), and cerebrospinal fluid (CSF). Factor scores from single or multiple modalities were 
entered in logistic regression models to predict MCI to AD conversion for 160 ADNI subjects over 
a 2-year interval.
Results: NP factors attained an area under the curve (AUC) of .80, with a sensitivity of .66 and 
a specificity of .77. MRI factors reached a comparable level of performance (AUC = .80, sensitiv-
ity = .66, specificity = .78), whereas CSF factors produced weaker prediction (AUC = .70, sensitiv-
ity = .56, specificity = .79). Combining NP factors with MRI or CSF factors produced better 
prediction than either MRI or CSF factors alone. Similarly, adding MRI factors to NP or CSF factors 
produced improvements in prediction relative to NP or CSF factors alone. However, adding CSF 
factors to either NP or MRI factors produced no improvement in prediction.
Conclusions: Latent factor scores provided good accuracy for predicting MCI to AD conversion. 
Adding NP or MRI factors to factors from other modalities enhanced predictive power but adding 
CSF factors did not.
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According to the Alzheimer’s Association’s (2021) 
report, 11.3% of American adults age 65 or older 
develop Alzheimer’s disease (AD), which is the fifth 
leading cause of death in this population. In recent 
years, mild cognitive impairment (MCI) was introduced 
as an intermediate state between normal cognition 
and AD (Petersen, 2004; Petersen, 2011), with roughly 
one-third of MCI patients converting to AD within 
three years following MCI diagnoses (Mitchell & Shiri- 
Feshki, 2009). Considering that only a subset of MCI 
patients eventually develops AD, identifying those 
patients in advance is critical for developing targeted 
interventions that reduce the MCI to AD conversion 
rate. In other words, it is crucial to develop methods to 
distinguish MCI patients who convert to AD (MCIC) 
from patients who do not convert (MCINC) as early as 
possible. The current paper tests the ability of latent 
factors to predict MCI to AD conversion and examines 
whether multimodal factor scores improve prediction. 
In the following sections, we first explain the advantages 

of using latent factors as predictors and review recent 
studies that implemented the latent-variable approach. 
Next, we briefly summarize the relevant findings for 
predictors of MCI to AD conversion with the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
dataset, which we used in the current study.

Latent factors as predictors of MCI to AD 
conversion

In most prior studies that investigated the prediction of 
MCI to AD conversion, individual variable scores were 
used as predictors. However, a few recent studies have 
attempted to use latent variables that are extracted from 
individual variables as predictors (Chapman et al., 2011; 
Eckerström et al., 2013; Giraldo et al., 2017; Wilhalme 
et al., 2017). In such an approach, a dimension reduc-
tion method such as principal component analysis 
(PCA) or exploratory factor analysis (EFA)1 is used to 
extract the latent components or factors that underlie 
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a set of individual predictors. Then, subjects’ compo-
nent or factor scores, rather than their scores on indivi-
dual predictors, supply the variables that are entered 
into prediction models.

Psychometrically, using latent variables as predictors 
for MCI to AD conversion has several benefits over 
using individual variables. First, latent variable scores 
reduce error variance through statistical aggregation 
(Rushton et al., 1983), and hence, they are normally 
more reliable than subjects’ scores on individual pre-
dictors (Crane et al., 2012; Wilhalme et al., 2017). 
Second, some predictors can be differentially sensitive 
to AD conversion in different sub-populations, and 
latent variables can minimize such bias (Gibbons et al., 
2012). For instance, word list recognition can detect 
cognitive declines when functional impairment is still 
absent, whereas word list immediate recall cannot cap-
ture declines until mild functional impairment is pre-
sent (Jutten et al., 2021). In such circumstances, 
incorporating these test scores into component or fac-
tor scores should be more appropriate for a total popu-
lation with subjects at different clinical stages. Third, 
using latent variables can eliminate multicollinearity 
and overfitting problems without dropping predictors 
from the model. That is, by using latent variables as 
predictors, one can decrease the number of variables 
that are entered when fitting prediction models while 
simultaneously preserving information about the indi-
vidual variables.

In line with these points, the latent-variable approach 
has demonstrated good potential for improving MCI 
to AD prediction. To illustrate, Wilhalme et al. (2017) 
conducted an EFA for the neuropsychological (NP) data 
of 71 MCI patients in the Imaging and Genetic 
Biomarkers for AD (ImaGene) study. They found that 
the area under the receiver operating characteristic 
(ROC) curve (AUC) for the individual NP factor scores 
were very promising, ranging from .73 to .89. Similarly, 
Chapman et al. (2011) used a PCA to generate compo-
nent scores for the NP data of 43 MCI patients in 
a longitudinal study. They reported that the accuracy 
level of MCIC-MCINC classifications using component 
scores was quite good (.84, sensitivity = .86, specifi-
city = .83). Finally, Eckerström et al. (2013) conducted 
PCAs of the NP, magnetic resonance imaging (MRI), 
and cerebrospinal fluid (CSF) data of 42 MCI patients in 
the Gothenburg MCI study and reported that combin-
ing the component scores for the three modalities 
accounted for a near-perfect AUC of .98.

In brief, the latent-variable approach has several psy-
chometric benefits, and a few studies have shown that it 
is a promising candidate for improving the prediction of 
MCI to AD conversions. However, the aforementioned 

studies were all conducted with very small sample sizes 
and mostly with a single data modality (i.e., NP data). 
Thus, it is important to verify the predictive ability of 
latent factors using larger sample sizes and multiple data 
modalities.

Major predictors of MCI to AD conversion in the 
ADNI

In the current paper, we used the ADNI dataset for 
testing the latent-variable approach. The ADNI is an 
ongoing, longitudinal study that collects cognitive, bio-
chemical, and neuroimaging data from healthy controls, 
MCI patients, and AD patients at multiple sites in the 
United States and Canada (Mueller et al., 2005). Since 
the study began, the ADNI database has formed the 
basis for large numbers of studies in which potential 
predictors of AD have been evaluated, particularly NP 
assessments, MRI biomarkers, and CSF biomarkers 
(Weiner et al., 2017). Below, we briefly summarize the 
findings for these three modalities of predictors.

NP assessments are the least expensive, invasive, and 
time-consuming of AD predictors. Moreover, they have 
demonstrated comparable or higher accuracy relative to 
predictors from the other modalities (Cui et al., 2011; 
Devanand et al., 2012; Eckerström et al., 2013; Gomar 
et al., 2014; Li et al., 2017). For example, when classify-
ing 143 MCI patients as MCIC or MCINC, Cui et al. 
(2011) found that a cluster of five NP instruments 
reached an AUC of .76 (sensitivity = .91 and specifi-
city = .48). Furthermore, Gomar et al. (2014) obtained 
an AUC of .78 (sensitivity = .58 and specificity = .74) for 
318 MCI patients with only two NP assessments.

Turning to MRI predictors, many ADNI studies have 
provided supporting evidence that MRI biomarkers can 
be reliable predictors of MCI to AD conversion (Barnes 
et al., 2014; Cui et al., 2011; Cuingnet et al., 2011; 
Davatzikos et al., 2011; Devanand et al., 2012; Ewers 
et al., 2012; Li et al., 2017). For instance, Ewers et al. 
(2012) showed that right entorhinal cortical thickness 
was the best single predictor for a sample of 130 MCI 
patients, with an overall prediction accuracy of .69 
(sensitivity = .53 and specificity = .77). In addition, 
Devanand et al. (2012) found that hippocampal and 
entorhinal volumes together yielded an AUC of .74 
(sensitivity = .56 with specificity fixed at .80) for 282 
MCI patients.

Continuing to CSF biomarkers, the most common 
CSF predictors of AD are the CSF concentration of 
total tau (t-tau), amyloid beta (Aβ42), phosphorylated 
tau (p-tau), ratios of t-tau to Aβ42, and ratios of t-tau 
to Aβ42 (Cui et al., 2011; Davatzikos et al., 2011; Fjell 
et al., 2010; Gomar et al., 2011, 2014; Shaw et al., 2009; 
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Ye et al., 2012), although there is also increasing inter-
est in novel non-amyloid and non-tau CSF predictors 
(Weiner et al., 2017). In predicting MCI to AD con-
version, Gomar et al. (2011) and Ye et al. (2012) 
reported similar AUCs for t-tau/Aβ42: .64 with 168 
MCI patients and .63 with 319 MCI patients, respec-
tively. In addition, Cui et al. (2011) found that 
a combination of t-tau/Aβ42 and p-tau/Aβ42 delivered 
a similar level of predictive performance (AUC = .64, 
sensitivity = .80, specificity = .48). Notably, the 
reported predictive power of CSF variables with 
ADNI subjects seems relatively weaker than that of 
NP or MRI variables.

Because abundant data are available for three dis-
tinct modalities in ADNI, it is natural to ask whether 
combining data across modalities can improve the 
prediction of future AD. However, prior studies 
have yielded mixed findings on the utility of multi-
modal predictors. On the one hand, some research 
suggests that combining predictors from different 
modalities can increase prediction accuracy (Chen 
et al., 2015; Cui et al., 2011; Devanand et al., 2012; 
Shaffer et al., 2013; Ye et al., 2012; Zhang et al., 
2012). On the other hand, multimodal predictors 
have failed to outperform single-modal predictors 
in other studies (Ewers et al., 2012; Gomar et al., 
2011, 2014; Richard et al., 2013).

The current study

Our study had two goals. First, although some 
research shows that latent variable scores are promis-
ing candidates for improving predictions of MCI 
to AD conversions, they were all conducted with 
small patient samples. In the current study, we built 
on this line of research by implementing the EFA and 
CFA approaches with the ADNI data, which is one of 
the most comprehensive AD databases. Second, as 
prior studies reported mixed findings on whether 
combining cognitive, neuroimaging, and biochemical 
variables can improve predictions of MCI to AD con-
versions, we examined whether combining latent fac-
tor scores from multiple modalities (NP, MRI, and 
CSF) yields better predictive accuracy. To isolate the 
latent factors for each modality and to generate factor 
scores, we conducted three separate EFAs and three 
separate CFAs. Then, single-modal and multimodal 
factor scores were entered into a series of logistic 
regression models that predicted MCI to AD conver-
sions in the ADNI sample over a 2-year interval. Our 
working hypotheses were that latent factor scores 
should yield good predictive power and that combina-
tions of NP, MRI, and CSF factor scores should 

improve predictive power, relative to single-modal 
factor scores.

Method

Subjects

The data that we analyzed were obtained from the 
ADNI 1 database (http://adni.loni.usc.edu/). The 
ADNI includes four grant periods: ADNI 1, ADNI 
GO, ADNI 2, and ADNI 3. The ADNI 1 includes the 
initial ADNI cohort of 819 ADNI subjects. In each 
phase following ADNI 1, new subjects were added and 
the subjects from the prior phases were followed up to 
the extent possible. In the current paper, we focused on 
the ADNI 1 data because the data for most non-amyloid 
and non-tau CSF variables were only available for this 
cohort. Specifically, we focused on ADNI 1 subjects with 
MCI diagnoses in the baseline session (N = 397) and 
tracked their clinical diagnoses in the following 
24 months. Clinical diagnoses of MCI or AD were 
established at baseline and at each subsequent session 
(at 6, 12, 18, 24 months) based on the following five 
criteria: (a) both MCI and AD subjects must have mem-
ory complaints made by the subject or by a study part-
ner; (b) education-adjusted Logical Memory II subscale 
[from the Wechsler Memory Scale-Revised (Wechsler, 
1987)] scores: for ≥ 16 years of education, 9–11 for MCI 
and ≤ 8 for AD; for 8–15 years of education, 5–9 for 
MCI and ≤ 4 for AD; for 0–7 years of education, 3–6 for 
MCI and ≤ 2 for AD; (c) Mini Mental State Exam scores: 
24–30 for MCI and 20–26 for AD; (d) Clinical Dementia 
Rating (CDR; Morris, 1993) scores: total score = 0.5 and 
memory box score ≥ 0.5 for MCI2 and total score = 0.5 
or 1 for AD; (e) MCI subjects must have relatively 
preserved general cognitive and functional performance 
that rule out an AD diagnosis, whereas AD subjects 
must have met the National Institute of Neurological 
and Communicative Disorders and Stroke–Alzheimer’s 
Disease and Related Disorders Association (NINCDS/ 
ADRDA) criteria for probable AD. Full details of the 
diagnostic criteria can be found in the ADNI 1 
Procedures Manual (http://adni.loni.usc.edu/methods/ 
documents/).

We included all 397 ADNI 1 baseline MCI subjects in 
the EFA and CFA of NP predictors, as NP data were 
available for all these subjects. For the same reason, we 
used all 397 MCI subjects’ pre-processed and quality- 
controlled MRI data in the EFA and CFA of MRI pre-
dictors. Because CSF data were only collected from 
a subsample of 187 MCI subjects, the EFA and CFA of 
CSF predictors were confined to those subjects. A final 
group of logistic regressions was restricted to the MCI 
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subjects for whom NP, MRI, and CSF data were avail-
able for baseline, and MCI to AD conversion statuses 
were identifiable for the following 24 months 
(N = 160).3 These subjects were split into two sub-
groups: MCIC (N = 68) and MCINC (N = 92).4

Overview of predictors

NP predictors

We included baseline scores from the following NP tests 
in our analyses: Alzheimer’s Disease Assessment Scale – 
Cognitive (ADAS-Cog; Rosen et al., 1984) delayed 
recall, recognition, naming, and cancelation, Rey 
Auditory Verbal Learning Test (RAVLT; Rey, 1964) 
trial 1–5 recall and forgetting, Clock Drawing Test 
(CDT) command and copy, Digit Span forward and 
backward, Categorical Fluency Test (CFT; Harrison 
et al., 2000) animals and vegetables, Boston Naming 
Test (Goodglass et al., 1983), and Trail Making Tests 
(TMT; Reitan & Wolfson, 1985) parts A and B.

MRI predictors

MRI data were acquired with 1.5 Tesla MRI scanners at 
multiple sites and were processed with FreeSurfer 
Version 4.3.0 at the University of California San 
Francisco.5 We selected multiple regions of interest 
that were found to be most discriminating between 
MCIC and MCINC groups based on Risacher et al.’s 
(2009) review, including entorhinal cortex, hippocam-
pus, amygdala, temporal pole, middle temporal gyrus, 
inferior temporal gyrus, superior temporal gyrus, infer-
ior parietal gyrus, superior parietal gyrus, inferior lateral 
ventricle, cerebral cortex, precuneus, supramarginal 
gyrus, inferior lateral ventricle, lateral ventricle, nucleus 
accumbens, and ventral dorsal column. For these 
regions of interest, we considered cerebral volume or 
cortical thickness or both. For cerebral volume, we used 
the summed values of the left and right hemispheres. In 
addition, to control for individual differences in brain 
size, we used a normalization procedure in which cere-
bral volume was divided by intracranial volume (ICV; 
Shi et al., 2009; Whitwell et al., 2001). For cortical 
thickness, we used mean values of the left and right 
hemispheres.

CSF predictors

CSF samples were collected via lumbar puncture. We 
considered 15 CSF predictors that had been identified as 
promising biomarkers based on Weiner et al.’s (2017) 
review and multiple other ADNI studies (Deming et al., 

2016; Khan et al., 2015; Mattsson et al., 2014; Morenas- 
Rodríguez et al., 2016; Paterson et al., 2014; Portelius 
et al., 2015; Suárez-Calvet et al., 2016; Toledo et al., 
2014), including CSF concentrations of t-tau, p-tau, 
Aβ42, t-tau/Aβ42, p-tau/Aβ42, neurogranin, Interleukin 
6, factor H, complement C3, progranulin, clusterin, 
chromogranin-A, cystatin-C, fatty acid-binding protein 
3, and sTREM2.

Overview of statistical procedures

EFAs

The EFAs were aimed at identifying latent factors that 
could be used to predict MCI to AD conversion. Three 
separate EFAs were conducted for NP, MRI, and CSF 
predictors using the psych package (Revelle, 2016) in (R 
Core Team, 2019). We only included predictors with 
Kaiser-Meyer-Olkin (KMO; Kaiser, 1970; Kaiser & Rice, 
1974) scores > .5, which is the conventional indicator of 
sampling adequacy in factor analyses (Williams et al., 
2010; Yong & Pearce, 2013). Following Costello and 
Osborne’s (2005) recommendations, we considered 
multiple sources of information when determining the 
number of factors to extract, including Kaiser’s criterion 
(eigenvalue > 1; Kaiser, 1958), scree plots (Cattell & 
Vogelmann, 1977), parallel analysis (Horn, 1965) and 
a priori factor structure. Specifically, we ran multiple 
EFAs with the number of factors set at values above, 
equal to, and below the suggested numbers. After that, 
we chose the best-fitting factor solution by applying the 
following criteria: statistical interpretability, theoretical 
significance, parsimony, and absence of Heywood cases. 
The factors were then extracted using principal axis 
factoring and rotated using the varimax method. 
Finally, factor scores were estimated for these factors 
using the Bartlett algorithm (Hershberger, 2005).

CFAs6

The CFAs were also conducted to generate factor 
scores that can be used to predict MCI to AD conver-
sion. All the CFA analyses were conducted with the 
lavaan package in R (Rosseel, 2012). All variables were 
standardized before being entered into the CFA models. 
As will be seen in the Results section, the factor solu-
tions produced by EFAs are of high theoretical inter-
pretability. Thus, we used the same factor solutions in 
CFAs as in EFAs. Additionally, we modified the models 
based on the modification indices (MIs)7 by adding 
paths between latent factors and observed variables or 
adding error covariances between observed variables. 
For parsimony, we only considered modifications with 
MI > 10. To avoid over-fitting, we only made modifica-
tions that are theoretically meaningful. Meanwhile, we 
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avoid making any modifications that would introduce 
Heywood cases.

Logistic regressions

As mentioned, baseline MCI subjects were classified as 
MCIC or MCINC. We used logistic regression to predict 
conversion status (MCIC vs. MCINC). The logistic 
regressions and cross-validations were conducted 
using the stats and caret packages in R, respectively (R 
Core Team, 2019; Kuhn, 2008), and the accompanying 
ROC analyses were conducted with the pROC package 
in (Robin et al., 2011). In all the logistic regression 
models, we included age, education, gender, and 
APOE ε4 status as covariates. We first conducted logis-
tic regressions using single-modal factors (NP, MRI or 
CSF) as predictors. Next, we used factors from two 
modalities (NP + MRI, NP + CSF, or MRI + CSF) as 
predictors, and last, we used factors from all three mod-
alities (NP + MRI + CSF). By adopting such an 
approach, we were able to determine (a) whether factor 
scores had good predictive power, as measured by AUC, 
sensitivity, and specificity; (b) whether incorporating 
factor scores from multiple modalities improved pre-
dictive power compared to using single-modal factor 
scores. Finally, we used a leave-one-out cross-validation 
to estimate the robustness of our models. In the leave- 
one-out cross-validation, we left out one participant’s 
data in each iteration, which served as testing data to 
which we applied the parameter estimates, and used the 
remaining data (N − 1, where N is the sample size) as 
training data from which we derived the parameter 
estimates. Thus, such a procedure was repeated 
N times, each for one particular participant’s data.

Results

Descriptive statistics

We report the descriptive statistics for the key demo-
graphic characteristics, 16 NP predictors, 19 MRI pre-
dictors, and 15 CSF predictors, separately for MCIC and 
MCINC subjects in Table 1. In addition, we conducted 
chi-squared tests or two-sample t-tests to compare those 
values between MCIC and MCINC subjects and report 
the effect sizes and p values in Table 1.

Factor analyses

EFAs
The scree plots and parallel analyses for the EFAs of NP, 
MRI, and CSF predictors are displayed in Figure 1. As 
indicated there, the different tests for factor retention 

suggested 2–5 factors for NP predictors, 2–4 factors for 
MRI predictors, and 2–4 factors for CSF predictors. 
After careful comparison between these potential factor 
solutions using the aforementioned selection criteria, we 
ultimately extracted five factors in the EFA of NP pre-
dictors, three factors in the EFA of MRI predictors, and 
three factors in the EFA of CSF predictors. It should be 
noted that the five-factor solution for NP predictors 
aligns with the results of other recent factor analyses of 
the ADNI NP battery (Chang & Brainerd, 2021; Park 
et al., 2012).

The factor loadings in the EFAs of NP, MRI, and CSF 
predictors are reported in Tables 2, 3, and 4, respec-
tively. A visual inspection of Table 2 reveals a highly 
interpretable NP factor structure. Factor 1 is clearly 
a memory factor as all memory measures loaded highly 
on it. Similarly, the specific tests that load highly on 
factors 2–5 indicated that they are language, executive 
function, attention, and visuospatial processing factors, 
respectively. Table 3 reveals a highly interpretable MRI 
factor structure, too. Factor 1 is a temporal-parietal 
factor because middle, inferior, and superior temporal 
gyrus, inferior and superior parietal cortex, precuneus 
(part of the superior parietal lobule), and supramarginal 
gyrus (part of the parietal lobe) all loaded highly on it. 
Factor 2 is an entorhinal-amygdala factor as entorhinal 
cortex loaded the highest on this factor, followed by 
amygdala.8 Finally, factor 3 is a ventricle factor as infer-
ior lateral ventricle and lateral ventricle loaded the high-
est on it.

Next, continuing to CSF factors in Table 4, factor 1 is 
clearly an amyloid-tau factor because t-tau, p-tau, Aβ42, 
t-tau/Aβ42, and p-tau/Aβ42 all loaded highly on it. 
Factor 2 is a neuroprotection factor, as the variables 
that loaded the highest on it (clusterin and cystatin C) 
were shown to play a protective role against AD by 
modulating Aβ fibril formation and toxicity (Boggs 
et al., 1996; Kaur & Levy, 2012; Miners et al., 2017). 
Additionally, cystatin C and chromogranin-A were both 
negatively associated with brain atrophy rate (Paterson 
et al., 2014). Factor 3 is a neuroinflammation factor as it 
is characterized by the strong loadings of complement 
C3, factor H, progranulin, and Interleukin 6, which all 
contribute to or regulate neuroinflammation (Hampel 
et al., 1999; Hu et al., 2016; Kumar et al., 2015; Martens 
et al., 2012; Pogue et al., 2009).9

We generated factor scores from the three EFAs 
using the Bartlett method. The descriptive statistics of 
those factor scores are provided in Table 5. For the five 
NP factors, MCINC subjects had higher scores of factors 
1 (memory) and 5 (visuospatial processing), and lower 
scores of factor 3 (executive function) than MCIC sub-
jects, while they did not differ in scores of the other two 
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Table 1. Descriptive data for the 160 ADNI 1 subjects with mild cognitive impairment at baseline.
Group

Variables MCIC (N = 68) MCINC (N = 92) Effect Size p value

Demographic
Age 74.80 (7.16) 74.10 (7.69) .04 .474
Education 15.57 (2.98) 16.25 (2.74) .24 .059
Gender, Female (%) 35.29% 33.70% .003 .966
APOE ε4 carriers (%) 64.71% 46.73% .17 .072

NP
ADAS Delayed Recall .29 (.20) .43 (.24) .63 < .001
ADAS Recognition .56 (.24) .64 (.22) .37 .041
RAVLT Trial 1–5 Recall .35 (.09) .44 (.12) .83 < .001
RAVLT Forgetting .79 (.28) .63 (.32) .54 < .001
CDT Command 3.84 (1.11) 4.36 (.86) .52 .006
CDT Copy 4.59 (.63) 4.64 (.78) .08 .686
Digit Span Forward 8.46 (2.02) 8.41 (2.05) .02 .895
Digit Span Backward 6.10 (1.79) 6.35 (2.40) .12 .530
CFT Animal 15.04 (4.64) 16.25 (4.54) .26 .167
CFT Vegetable 9.84 (2.91) 11.40 (3.55) .48 .008
Boston Naming Test 25.25 (3.96) 26.16 (4.02) .23 .215
ADAS Naming 4.75 (.47) 4.73 (.58) .04 .817
TMT Part A 49.26 (24.24) 41.26 (16.82) .38 .038
TMT Part B 154.12 (74.62) 108.14 (56.28) .70 < .001
ADAS Cancellation 3.93 (.86) 4.09 (.80) .20 .295

MRI
Entorhinal Cortex CV .0020 (.0005) .0022 (.0005) .45 .013
Entorhinal Cortex TA 3.00 (.42) 3.22 (.46) .52 .005
Hippocampus SV .0037 (.0006) .0041 (.0007) .63 < .001
Amygdala SV .0015 (.0002) .0016 (.0002) .50 .007
Temporal Pole TA 3.33 (.33) 3.45 (.33) .37 .041
Middle Temporal Gyrus CV .0110 (.0014) .0123 (.0015) .90 < .001
Middle Temporal Gyrus TA 2.29 (.19) 2.43 (.15) .85 < .001
Inferior Temporal Gyrus TA 2.57 (.20) 2.70 (.19) .71 < .001
Superior Temporal Gyrus TA 2.36 (.20) 2.45 (.18) .47 .011
Inferior Parietal Gyrus TA 2.07 (.19) 2.21 (.14) .80 < .001
Superior Parietal Gyrus TA 1.86 (.18) 1.94 (.16) .52 .005
Cerebral Cortex SV .2443 (.0181) .2516 (.0201) .38 .036
Precuneus TA 2.96 (.17) 2.07 (.14) .75 < .001
Supramarginal Gyrus TA 2.17 (.17) 2.28 (.16) .64 < .001
Inferior Lateral Ventricle SV .0018 (.0010) .0012 (.0009) .60 <.001
Lateral Ventricle SV .0283 (.0120) .0234 (.1112) .43 .020
Nucleus Accumbens SV .0005 (.0001) .0006 (.0001) .45 .013
Cerebral Cortex White Matter SV .2690 (.0237) .2782 (.0234) .39 .034
Ventral Dorsal Column SV .0045 (.0005) .0046 (.0005) .25 .177

CSF
t-tau 111.06 (50.14) 92.94 (51.64) .36 .045
p-tau 40.08 (16.88) 32.25 (15.30) .49 .008
Aβ42 145.33 (37.37) 173.83 (56.88) .59 < .001
t-tau/Aβ42 .82 (.41) .63 (.51) .37 .037
p-tau/Aβ42 .30 (.15) .22 (.15) .49 .007
Neurogranin 529.91 (378.79) 471.34 (334.75) .16 .386
Interleukin 6 6.89 (6.07) 5.11 (6.17) .13 .569
Factor H 1545.39 (654.11) 1678.34 (639.41) .21 .268
Complement C3 3789.43 (2287.03) 4335.09 (2334.38) .24 .206
Progranulin 1721.28 (1266.81) 1541.31 (286.94) .20 .386
Clusterin 20.55 (.50) 20.69 (.46) .29 .175
Chromogranin-A 19.971(.83) 20.09 (1.16) .17 .388
Cystatin-C 34.10 (.39) 34.19 (.38) .23 .268
Fatty Acid-Binding Protein 3 14.76 (.39) 14.74 (.46) .04 .817
sTREM2 4362.28 (1992.74) 4575.78 (2841.07) .09 .686

Standard deviations are included in parentheses. MCIC = MCI subjects who converted to AD within 24 months; MCINC = MCI subjects who did not convert to AD 
within 24 months. 

NP = neuropsychological; MRI = magnetic resonance imaging; CSF = cerebrospinal fluid. 
ADAS = Alzheimer’s Disease Assessment Scale; RAVLT = Rey Auditory Verbal Learning test; CDT = Clock Drawing Test; CFT = Categorical Fluency Test; 

TMT = Trail Making Test. 
RAVLT Forgetting was measured as the percentage of recall decline between the 5th and the delayed recall test. Scores derived from the ADAS battery were all 

reversed-coded so higher scores indicate better performance. 
SV = subcortical volume. CV = cortical volume. TA = cortical thickness average. Subcortical and cortical volumes were normalized by intracranial volume. The 

unit of measurement for cortical thickness is mm. 
t-tau = total tau; p-tau = phosphorylated tau. sTREM2 = soluble triggering receptor expressed on myeloid cell 2. 
The unit of measurement for t-tau, p-tau, and Aβ42, Neurogranin, Interleukin 6, Progranulin, Fatty Acid-Binding Protein 3, and sTREM2 is pg/ml. The unit of 

measurement for Factor H, Complement C3, Cystatin-C, and Chromogranin-A is ng/ml. The unit of measurement for Clusterin is μg/ml. 
The effect size column indicates Cramer’s V of chi-squared tests or Cohen’s d of two-sample t tests between MCIC and MCINC. 
The p value column indicates p values of chi-squared tests or of two-sample t tests between MCIC and MCINC, which were corrected for multiple comparisons 

using the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995). P values < .05 were highlighted in bold font.
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factors (language and attention). Here, because both 
TMT variables loaded positively on factor 3 and their 
index variable is response time, lower factor 3 scores 
actually indicate better executive function. Thus, the 
results of factor scores suggest that MCI subjects who 
did not convert to AD had better memory, executive 
function, and visuospatial processing than those who 
converted to AD.

Continuing to MRI factors, Table 5 shows that 
MCINC subjects had higher scores of all three MRI 
factors (temporal-parietal, entorhinal-amygdala, and 
ventricle) than MCIC subjects. For factor 3, because 
both inferior lateral ventricle and lateral ventricle loaded 
negatively on it, higher factor 3 scores suggest smaller 
ventricles. Thus, the results indicate that MCINC sub-
jects had larger brain volumes and thicker cortex in the 
selected brain regions as well as smaller brain ventricles 
relative to MCIC subjects.

As for CSF factors, scores of factor 1 (amyloid-tau) 
were significantly higher for MCIC subjects than for 
MCINC subjects. Here, higher scores of factor 1 indicate 
higher CSF levels of t-tau and p-tau as well as lower CSF 
levels of Aβ42, which probably reflects higher intensity 
of intracellular neurofibrillary tangles and higher levels 
of deposition of Aβ42 in plaques (Blennow, 2004; Welge 
et al., 2009). Scores of the other two factors did not differ 
significantly between MCINC and MCINC subjects.

CFAs
As mentioned, we used the same 5-factor solution for 
NP variables and 3-factor solutions for MRI and CSF 

variables in CFAs as in EFAs, and we made necessary 
modifications based on modification indices. The final 
factor solutions of the three CFAs for NP, MRI, and CSF 
variables (Figures S1, S2, and S3) and the CFA factor 
loadings (Table S1) are presented in the Supplementary 
Materials. We relied on comparative fit index (CFI), 
root mean square of approximation (RMSEA), and 
standardized root mean squared residual (SRMR) for 
evaluating the CFA model fits, with CFI ≥ .90, RMSEA ≤ 

Figure 1. The left panel displays the scree plot with parallel analysis for the neuropsychological predictors. The middle panel displays 
the scree plot with parallel analysis for the magnetic resonance imaging predictors. The right panel displays the scree plot with parallel 
analysis for the cerebrospinal fluid predictors. The blue solid line with triangles indicates the observed eigenvalues, with each triangle 
representing one factor. The black solid line indicates eigenvalue = 1, and thus the number of triangles above the black line indicates 
the number of factors to retain, as suggested by the Kaiser’s criterion. The red dotted line indicates the random eigenvalues of the 
simulated data. The number of triangles on the blue line that lies above the corresponding red line indicates the number of factors to 
retain, as suggested by parallel analysis.

Table 2. Exploratory factor analysis loadings of neuropsycholo-
gical predictors for 160 ADNI 1 subjects with mild cognitive 
impairment at baseline.

NP Predictors Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

ADAS Delayed Recall .74 −.04 −.07 −.05 .02
ADAS Recognition .53 .01 −.02 −.09 −.07
RAVLT Trial 1–5 Recall .67 .14 −.03 .17 .01
RAVLT Forgetting −.72 .04 −.13 .03 −.05
CDT Command .07 .01 −.04 .00 .69
CDT Copy −.07 .09 −.05 −.02 .54
Digit Span Forward −.04 .07 .06 .65 −.03
Digit Span Backward .03 −.05 −.09 .72 .03
CFT Animal .11 .59 −.19 −.03 −.08
CFT Vegetable .24 .47 −.15 −.03 −.02
Boston Naming Test −.04 .78 .02 .01 .08
ADAS Naming −.05 .54 .14 .10 .13
TMT Part A .06 .03 .72 .01 −.08
TMT Part B −.07 −.03 .63 −.14 −.06
ADAS Cancellation −.02 .10 −.58 −.05 −.02

SS loadings 1.96 1.70 1.50 1.05 .92

Note. ADAS = Alzheimer’s Disease Assessment Scale; RAVLT = Rey Auditory 
Verbal Learning test; CDT = Clock Drawing Test; CFT = Categorical Fluency 
Test; TMT = Trail Making Test. 

RAVLT Trial 1–5 Recall was the average recall across trials 1 to 5. RAVLT 
Forgetting was measured as the percentage of recall decline between the 
5th and the delayed trial. Scores derived from the ADAS battery were all 
reversed-coded so higher scores indicate better performance. Loadings ≥ 
.40 were highlighted in bold font. SS loadings = sum of squared loadings.
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.08, and RMSEA ≤ .08 indicating adequate model fits 
(Browne & Cudek, 1993; Hu & Bentler, 1999). The fit of 
the CFA model for NP variables was excellent 
(CFI = .97, RMSEA = .03, SRMR = .04), but the fits of 
the CFA models for MRI variables (CFI = .90, 
RMSEA = .11, SRMR = .10) and for CSF variables 
(CFI = .91, RMSEA = .13, SRMR = .08) were slightly 
worse. Here, we noted that although all three fit indices 
delivered a good fit for the NP model, there were dis-
agreements between CFI, RMSEA, and SRMR for the 

MRI and CSF models. However, because CFIs indicated 
adequate fits for the latter two CFA models and dis-
agreements between these fit statistics are typically not 
diagnostic of model specification problems (Lai & 
Green, 2016), we continued to generate factor scores 
using the current factor structures.

Logistic regressions

Using EFA factor scores as predictors
Next, we turn to the logistic regression models in which 
factor scores from the EFAs were used as predictors of 
the MCI to AD conversion. As shown in rows 1–3 of 
Table 6, when factor scores of a single modality are 
analyzed, NP factor scores produced an AUC of .80 
(sensitivity = .66 and specificity = .77 when c = .5).10 

Similarly, MRI factor scores produced an AUC of .80 
(sensitivity = .66, specificity = .78), and CSF factor 
scores produced an AUC of .70 (sensitivity = .56, speci-
ficity = .79). A visual inspection of Figure 2 reveals that 
the AUC of CSF factor scores is smaller than that of NP 
or MRI factor scores. We conducted one-sided DeLong’ 
tests (DeLong et al., 1988; Sun & Xu, 2014) to determine 
whether such differences were statistically significant.11 

The tests showed that the AUC for NP factors was larger 
than that of CSF factors, z = 1.98, p = .033, and the AUC 
for MRI factors was larger than that of CSF factors, 
z = 2.10, p = .027. There was no significant difference 
between the AUCs of NP and of MRI factors.

Furthermore, DeLong’ tests showed that the combi-
nation of NP and MRI factors increased AUC compared 
to NP factors alone, z = 2.26, p = .027, or MRI factors 

Table 3. Exploratory factor analysis loadings of magnetic reso-
nance imaging predictors for 160 ADNI 1 subjects with mild 
cognitive impairment at baseline.

MRI Predictors Factor 1 Factor 2 Factor 3

Entorhinal Cortex CV −.08 .82 −.02
Entorhinal Cortex TA .08 .86 −.09
Hippocampus SV .00 .65 .29
Amygdala SV −.09 .78 .04
Temporal Pole TA .20 .66 −.02
Middle Temporal Gyrus CV .44 .25 .26
Middle Temporal Gyrus TA .90 .05 .08
Inferior Temporal Gyrus TA .67 .22 .12
Superior Temporal Gyrus TA .65 .23 .12
Inferior Parietal Gyrus TA .96 −.04 .00
Superior Parietal Gyrus TA .87 −.02 −.25
Cerebral Cortex SV .45 .15 .32
Precuneus TA .93 −.04 −.13
Supramarginal Gyrus TA .90 −.09 .18
Inferior Lateral Ventricle SV −.06 −.27 −.60
Lateral Ventricle SV .01 .07 −.96
Nucleus Accumbens SV .06 .17 .48
Cerebral Cortex White Matter SV .14 .04 .59
Ventral Dorsal Column SV −.08 .16 .53

SS loading 5.78 3.64 2.89

Note. MRI = magnetic resonance imaging. SV = subcortical volume. 
CV = cortical volume. TA = cortical thickness average. Subcortical and 
cortical volumes were normalized by intracranial volume. The unit of 
measurement for cortical thickness is mm. 

Loadings ≥ .40 were highlighted in bold font. SS loadings = sum of squared 
loadings.

Table 4. Exploratory factor analysis loadings of cerebrospinal 
fluid predictors for 160 ADNI 1 subjects with mild cognitive 
impairment at baseline.

CSF Predictors Factor 1 Factor 2 Factor 3

t-tau .82 .28 −.05
p-tau .89 .38 −.03
Aβ42 −.74 .06 −.03
t-tau/Aβ42 .92 .10 .01
p-tau/Aβ42 .98 −.10 .02
Neurogranin .57 .31 −.16
Interleukin 6 .15 −.30 .41
Factor H −.06 .21 .76
Complement C3 −.08 .06 .90
Progranulin .18 −.21 .66
Clusterin −.06 .70 .31
Chromogranin-A .09 .63 −.10
Cystatin C .15 .79 .14
Fatty Acid-Binding Protein 3 .40 .58 .03
sTREM2 .14 .38 .24

SS loading 4.58 2.73 2.30

Note. CSF = cerebrospinal fluid; t-tau = total tau; p-tau = phosphorylated 
tau; sTREM2 = soluble triggering receptor expressed on myeloid cell 2. 

Loadings ≥ .40 were highlighted in bold font. SS loading = sum of squared 
loadings.

Table 5. Exploratory factor analysis factor scores for 160 ADNI 1 
subjects with mild cognitive impairment at baseline.

Group

Factors MCIC (N = 68) MCINC (N = 92) Cohen’s d p value

NP-Factor 1 −.60 (.84) .33 (1.20) .85 < .001
NP-Factor 2 −.09 (1.08) .13 (1.14) .21 .259
NP-Factor 3 .45 (1.24) −.28 (.84) .57 < .001
NP-Factor 4 .08 (1.17) .09 (1.27) .09 .605
NP-Factor 5 −.002 (1.18) .23 (1.32) .37 .038
MRI-Factor 1 −.39 (1.01) .31 (.82) .81 < .001
MRI-Factor 2 −.35 (.88) .18 (1.01) .60 < .001
MRI-Factor 3 −.18 (.96) .26 (.92) .47 .008
CSF-Factor 1 .36 (.91) −.21 (1.01) .50 .005
CSF-Factor 2 −.19 (1.11) .12 (1.10) .29 .114
CSF-Factor 3 .06 (1.45) −.04 (.79) .15 .417

Note. Standard deviations are included in parentheses. 
MCIC = MCI subjects who converted to AD within 24 months; MCINC = MCI 

subjects who did not convert to AD within 24 months; 
NP = neuropsychological; MRI = magnetic resonance imaging; 
CSF = cerebrospinal fluid. 

The factors with suffixes indicate the separate factors extracted for the NP, 
MRI, and CSFpredictors. 

The p values of two-sample t tests between MCIC and MCINC were corrected 
for multiple comparisons using the Benjamini-Hochberg procedure 
(Benjamini & Hochberg, 1995), with p values < .05 highlighted in bold font.
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alone, z = 2.37, p = .022. In addition, the NP + CSF 
combination increased the AUC compared to CSF 
factors alone (z = 2.76, p = .015), but it did not 
increase the AUC relative to NP factors alone. 
Meanwhile, the MRI + CSF combination increased 
the AUC relative to CSF factors alone (z = 3.04, 
p = .009), but it did not increase AUC relative to 
MRI factors alone. Thus, it seems that CSF factor 
scores did not offer additive predictive power relative 
to NP or MRI factor scores.

Finally, when we used factors from all three modal-
ities as predictors, we found that the AUC for the NP + 
MRI + CSF combination was comparable to that of the 
NP + MRI combination. This provides converging sup-
port for the view that CSF factor scores did not add 
independent predictive power to NP and MRI factors. 
Nevertheless, the NP + MRI + CSF combination pro-
duced a larger AUC than the NP + CSF combination, 
z = 2.27, p = .022, and a larger AUC than the MRI + CSF 
combination, z = 2.10, p = .027. This again shows that 
combining NP or MRI factors with factors from other 
data modalities improves the prediction. Additionally, 
the AUC for the NP + MRI + CSF combination was 
larger than that for NP factors alone (z = 2.28, p = .022), 

for MRI factors alone (z = 2.58, p = .019), or for CSF 
factors alone (z = 3.78, p = .001).

To evaluate the robustness of our findings, we con-
ducted a leave-one-out cross-validation. The results for 
the cross-validation analyses are presented in the lower 
half of Table 6. As can be seen there, the AUCs were 
slightly reduced compared to the full data, with the 
shrinkage ranging from .04 to .08. Importantly, the 
cross-validation analyses showed very similar patterns 
that NP and MRI factor scores delivered similar AUCs, 
which were larger than that of CSF factor scores, that 
adding NP or MRI factors to CSF factors increased 
AUCs, and that combining CSF factors with either NP 
or MRI factors produced no improvement in AUCs. All 
of this points to the conclusion that the model results for 
the full sample of MCI subjects are quite robust.

Using CFA factor scores as predictors
Similarly, we used factor scores from the CFAs as pre-
dictors of MCI to AD conversion in a series of logistic 
regressions. A summary of the logistic regression and 
leave-one-out cross-validation results is presented in 
Table 7, and the ROC curves for the logistic regression 

Table 6. Summary of logistic regression analyses with exploratory factor analysis factor score(s) as predictor(s) for 160 ADNI 1 subjects 
with mild cognitive impairment at baseline.

MCIC vs. MCINC (for 160 MCI subjects)

Predictor type Predictor
AUC 

(95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

Single modality
NP .80 (.73, .86) .66 (.55, .77) .77 (.69, .86) .73 (.66, .79)
MRI .80 (.74, .87) .66 (.55, .77) .78 (.70, .87) .73 (.66, .80)
CSF .70 (.62, .79) .56 (.44, .68) .79 (.71, .88) .69 (.62, .77)

Two modalities
NP + MRI .85 (.80, .91) .69 (.58, .80) .83 (.75, .90) .77 (.70, .83)
NP + CSF .80 (.74, .87) .62 (.50, .73) .82 (.74, .89) .73 (.66, .80)
MRI + CSF .81 (.75, .88) .60 (.49, .72) .79 (.71, .88) .71 (.64, .78)

Three modalities
NP + MRI + CSF .86 (.80, .91) .69 (.58, .80) .82 (.74, .89) .76 (.70, .83)

MCIC vs. MCINC (for leave-one-out cross-validation)

AUC Sensitivity Specificity Accuracy

Single modality
NP .74 .56 .73 .66
MRI .76 .57 .77 .69
CSF .62 .47 .73 .62

Two modalities
NP + MRI .79 .66 .74 .71
NP + CSF .72 .56 .76 .68
MRI + CSF .75 .56 .76 .68

Three modalities
NP + MRI + CSF .78 .63 .71 .68

Note. MCIC = MCI patients who converted to AD within 24 months; MCINC = MCI patients who did not convert to AD within 24 months; 
NP = neuropsychological; MRI = magnetic resonance imaging; CSF = cerebrospinal fluid. 

NP, MRI, and CSF without suffixes means that all separate factors within the respective modality are used as predictors in one logistic regression model. 
Sensitivity and specificity are estimated with threshold set to .5
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models are displayed in Figure 3. A visual inspection of 
Table 7 and Figure 3 reveals that the patterns were very 
similar to the results when using EFA factor scores as 
predictors. We again conducted Delong’s tests to com-
pare the AUCs. The tests showed that the AUC of MRI 
factors was larger than that of CSF factors, z = 2.33, 
p = .021, and there was no difference in the AUCs 
between NP factors and MRI factors or between NP 
factors and CSF factors. The NP + MRI combination 
produced an increase in AUC relative to NP factors 
(z = 2.37, p = .021) but not relative to MRI factors. 
The NP + CSF combination produced an increase in 
AUC relative to CSF factors (z = 2.42, p = .021) but not 
relative to NP factors. Similarly, the MRI + CSF combi-
nation produced an increase in AUC relative to CSF 
factors (z = 3.12, p = .007) but not relative to MRI 
factors.

When factors of all three data modalities are used as 
predictors, the AUC was larger than that of NP factors 
alone (z = 2.50, p = .021) and of CSF factors alone 
(z = 3.57, p = .003). Last, the NP + MRI + CSF 

combination produced larger AUC than the NP + CSF 
combination, z = 2.44, p = .021, but it produced no 
increase in AUC compared to the NP + MRI combina-
tion or the MRI + CSF combination. In summary, these 
results supported the previous findings that NP and 
MRI factor scores delivered similar AUCs, that adding 
NP or MRI factors to CSF factors increased AUCs for 
the latter, and that combining CSF factors with either 
NP or MRI factors produced no improvement in AUCs.

Additional analyses12

As follow-up analyses, we examined whether our results 
were robust if MCI subjects were diagnosed with the 
Jak/Bondi criteria (Bondi et al., 2014). The methods 
(Appendix A), logistic regression results (Table S2), 
and the ROC curves (Figure S4) for the additional 
analyses are presented in the Supplementary Materials. 
In brief, the AUCs were numerically reduced relative to 
the ADNI criteria, and the leave-one-out cross-valida-
tion analyses showed that the model results were not 

Figure 2. Receiver operating characteristics curves for all logistic regression models that used exploratory factor analysis factor scores 
to predict conversions from mild cognitive impairment to Alzheimer’s disease for the 160 ADNI 1 subjects at baseline. 
NP = neuropsychological; MRI = magnetic resonance imaging; CSF = cerebrospinal fluid.
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very robust. However, the basic qualitative pattern was 
preserved because the NP and MRI factors seemed more 
predictive than the CSF factors, and multimodal factors 
produced larger AUCs than single-modal factors. 
Delong’s tests revealed that only two pairwise compar-
isons of AUCs yielded significant differences: NP + MRI 
+ CSF produced a larger AUC than NP factors alone 
(z = 2.61, p = .034) or than CSF factors alone (z = 2.68, 
p = .034). Here, it is worth mentioning that the reduced 
sample size (from 160 to 99) leads to a higher type II 
error rate, which may explain why some previously 
reliable differences in AUCs were no longer significant.

Discussion

The current research was aimed at evaluating the ability 
of NP, MRI, and CSF factor scores to predict future 
transitions from MCI to AD over a 2-year interval, 
and to determine whether combinations of multimodal 
factor scores can further improve predictive power. We 
conducted separate EFAs and CFAs for NP, MRI and 
CSF measures to isolate their respective factor struc-
tures for ADNI 1 MCI subjects. This yielded a five- 
factor structure for NP (memory, language, executive 
function, attention, and visuospatial), along with 

three-factor structures for MRI (temporal-parietal, 
entorhinal-amygdala, and ventricle) and for CSF 
(tau-amyloid, neuroprotection, and neuroinflamma-
tion). Then, we conducted a series of logistic regres-
sions for predicting MCI to AD conversion, using 
either single-modal factor scores or multimodal fac-
tor scores as predictors.

Overall, we saw that NP and MRI factor scores deliv-
ered quite good predictive power over a 2-year interval. 
Our results echoed prior studies that demonstrated that 
factor scores are potentially powerful predictors of MCI 
to AD conversion (Chapman et al., 2011; Eckerström 
et al., 2013; Giraldo et al., 2017; Wilhalme et al., 2017). 
As noted in the Introduction, there are several reasons 
for using factor scores instead of individual test scores as 
predictors, including that factor scores have the advan-
tage of improving measurement precision by reducing 
inherent measurement biases in the single predictors 
(Crane et al., 2012; Wilhalme et al., 2017) and by com-
bining predictors that are differentially sensitive to AD 
conversion in different sub-populations (Gibbons et al., 
2012). Additionally, the use of factor scores also controls 
multicollinearity through reductions in the number of 
predictors while simultaneously preserving information 
about the individual variables.

Table 7. Summary of logistic regression analyses with confirmatory factor analysis factor score(s) as predictor(s) for 160 ADNI 1 
subjects with mild cognitive impairment at baseline.

MCIC vs. MCINC (for 160 MCI subjects)

Predictor type Predictor AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

Single modality
NP .76 (.68, .83) .60 (.49, .72) .77 (.69, .86) .70 (.63, .77)
MRI .80 (.73, .86) . 60 (.49, .72) .80 (.72, .89) .72 (.65, .79)
CSF .69 (.61, .77) .54 (.43, .66) .78 (.70, .87) .68 (.61, .75)

Two modalities
NP + MRI .82 (.76, .89) .66 (.55, .77) .78 (.70, .87) .73 (.66, .80)
NP + CSF .77 (.70, .84) .60 (.49, .72) .79(.71, .88) .71 (.64, .78)
MRI + CSF .81 (.74, .87) .65 (.53, .76) .77 (.69, .86) .72 (.65, .79)

Three modalities
NP + MRI + CSF .83 (.77, .89) .66 (.55, .77) .80 (.72, .89) .74 (.68, .81)

MCIC vs. MCINC (for leave-one-out cross-validation)

AUC Sensitivity Specificity Accuracy

Single modality
NP .69 .51 .75 .65
MRI .75 .60 .75 .69
CSF .62 .50 .76 .65

Two modalities
NP + MRI .75 .60 .73 .68
NP + CSF .68 .56 .74 .66
MRI + CSF .74 .59 .74 .68

Three modalities
NP + MRI + CSF .74 .62 .73 .68

Note. MCIC = MCI patients who converted to AD within 24 months; MCINC = MCI patients who did not convert to AD within 24 months; 
NP = neuropsychological; MRI = magnetic resonance imaging; CSF = cerebrospinal fluid. 

NP, MRI, and CSF without suffixes means that all separate factors within the respective modality are used as predictors in one logistic regression model. 
Sensitivity and specificity are estimated with threshold set to .5
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Moreover, this approach also has important theore-
tical and empirical advantages. On the theoretical side, 
compared to pure data-driven approaches such as 
machine learning algorithms of feature selection (e.g., 
Cui et al., 2011), the latent-variable approach has the key 
advantage of interpretability. Factor analysis is a data- 
reduction method that is aimed at identifying theoreti-
cal latent variables from a set of observed variables. As 
a result, individual variables that are entered into factor 
analysis are grouped under theoretically meaningful 
latent constructs, which is essential for testing theoreti-
cal assumptions. Empirically, the latent variable 
approach is easy to implement, low-cost, and efficient. 
Further, factor scores can be “harmonized” across 
different AD studies (Chapman et al., 2011, 2010; 
Hampton et al., 2020). That means it would be possible 
to compare factor scores directly across different bat-
teries, as long as their tests tap the same or similar latent 
constructs. Therefore, the latent-variable approach can 
potentially improve the standardization of diagnosis 
and prediction methods across different AD studies. 
After the predictive ability of factor scores is verified 
and the factor scores are standardized across different 
studies, it is possible that future research can develop 

cutoff criteria for the factor scores based on norming 
data and implement the latent-variable approach in 
clinical practice, much as how the Wechsler Adult 
Intelligence Scale (Cohen, 1957) is implemented for 
tests of intelligence.

In Table 6, Table 7, Figures 2 and 3, we can see that 
adding NP or MRI factors to CSF factors significantly 
improved predictive power, but it was not the other way 
around: CSF factor scores did not add any additional 
predictive power to either NP or MRI factors alone or to 
their combination. This finding is conceptually consis-
tent with prior findings that NP and MRI variables 
usually generate a better prediction for MCI to AD 
conversion than CSF predictors with the ADNI subjects 
(Cui et al., 2011; Devanand et al., 2012; Eckerström 
et al., 2013; Gomar et al., 2011, 2014; Li et al., 2017). 
Here, Jack et al.’s (2010) hypothetic model of the 
Alzheimer’s pathological cascade provides one possible 
explanation for CSF variables’ weaker predictive power 
for MCI to AD conversion. According to this model, 
different biomarkers display abnormalities in an 
ordered manner, and thus different biomarkers may 
dominate different stages of pathological changes. In 
that connection, certain CSF markers (e.g., CSF 

Figure 3. Receiver operating characteristics curves for all logistic regression models that used confirmatory factor analysis factor scores 
to predict conversions from mild cognitive impairment to Alzheimer’s disease for the 160 ADNI 1 subjects at baseline. 
NP = neuropsychological; MRI = magnetic resonance imaging; CSF = cerebrospinal fluid.

JOURNAL OF CLINICAL AND EXPERIMENTAL NEUROPSYCHOLOGY 327



concentration of Aβ42) reach a plateau at an earlier stage 
than other biomarkers. Therefore, it is possible that 
around the given two-year window of MCI to AD con-
version, some CSF variables have reached a plateau. 
Therefore, at this stage, their predictive power wanes 
while other biomarkers predominate the pathological 
processes.

On the one hand, there is general consensus in prior 
studies that combining NP and MRI predictors pro-
duces more accurate predictions (Barnes et al., 2014; 
Cui et al., 2011; Moradi et al., 2015; Ye et al., 2012; but 
see, Richard et al., 2013). Our results are in line with 
those findings in that the combination of NP and MRI 
factor scores produced improvement in prediction. It is 
also worth mentioning with respect to AUC, our NP + 
MRI model outperformed the results from multiple past 
ADNI studies that used multimodal data (Cheng et al., 
2015; Cui et al., 2011; Davatzikos et al., 2011; Gomar 
et al., 2011; Ye et al., 2012; Zhang et al., 2012).

On the other hand, past findings about the incre-
mental benefits of CSF predictors have been mixed: 
Some studies have found that combining CSF predic-
tors with predictors from other modalities slightly 
improved predictive power (Cui et al., 2011; 
Davatzikos et al., 2011; Eckerström et al., 2013; 
Shaffer et al., 2013), whereas other studies found no 
increase in predictive power (Gomar et al., 2011, 2014; 
Richard et al., 2013; Ye et al., 2012). Clearly, our results 
aligned with the latter. There are multiple possible 
explanations for the discrepant findings, such as varia-
tions in sample size and predictor selections. In the 
former connection, the studies that found positive 
results for CSF predictors were usually conducted 
with smaller samples than those that found negative 
results. In the latter connection, the aforementioned 
studies used different methods for selecting predictor 
variables, such as the minimum redundancy and max-
imum relevance filter method (e.g., Cui et al., 2011) or 
sparse logistic regression with stability selection (e.g., 
Ye et al., 2012). As a result, the final sets of variables 
that are entered into the prediction model are quite 
different, leading to different covariance structures 
among variables. Thus, it is possible that CSF variables 
can provide additional predictive power with certain 
variables from other modalities, but not with others. 
Here, we stress that considering the invasive nature of 
CSF sampling methods, uncertainty about the incre-
mental predictive value of CSF markers should be 
weighed when evaluating their continued use in clin-
ical diagnosis.

Because CSF data were only collected from a subset 
of the ADNI subjects, the results discussed so far were 
restricted to a relatively small sample (N = 160). In that 

connection, as CSF factor scores provided no added 
value relative to the combination of NP and MRI factor 
scores, we conducted a follow-up analysis without the 
CSF data. Because NP and MRI data are available for 
many more ADNI 1 subjects than CSF data, by only 
considering the former two types of data, we were able 
to repeat the logistic regression analyses with a larger 
sample (N = 319, including 134 MCIC subjects and 185 
MCINC subjects). This increased the statistical power 
and reliability of our analyses. The logistic regression 
results with EFA factor scores of NP and MRI data 
(Table S3) and the ROC curves (Figure S5) are pre-
sented in the Supplementary Materials. It can be seen 
there that the AUCs for NP factor scores, MRI factor 
scores, and the NP + MRI combination were very simi-
lar to those in Table 6. Specifically, the AUCs for NP, 
MRI, and NP + MRI factor scores were .80, .80, and .85 
with the 160-subject sample and .82, .80, and .86 with 
the 319-subject sample. Meanwhile, there was no differ-
ence in AUC between NP and MRI factors, while the 
AUC for NP + MRI factors was larger than that for NP 
factors, z = 2.59, p = .007, and for MRI factors, z = 3.05, 
p = .003. Further, the AUCs in the leave-one-out cross- 
validation analyses were only marginally lower, with the 
shrinkage in AUCs ranging from .02 to .03. On a related 
note, when 192 MCI subjects were reclassified based on 
the Jak/Bondi criteria, the logistic regression results with 
only NP and MRI EFA factors showed a similar pattern 
(see Appendix B, Table S4, and Figure S6 in the 
Supplementary Materials).

Moreover, the logistic regression results with CFA 
factor scores for the same 319 MCI subjects displayed 
a very similar pattern as those with EFA factor scores 
(see Table S5 and Figure S7 in the Supplementary 
Materials). First, the results in Table S5 resemble those 
in Table 7: the AUCs for NP, MRI, and NP + MRI factor 
scores were .76, .80, and .82 with the 160-subject sample 
and .79, .80, and .84 with the 319-subject sample. 
Second, the AUC for NP + MRI factors was larger 
than that for NP factors alone, z = 3.01, p = .004, and 
for MRI factors alone, z = 2.29, p = .016, with no 
difference in AUC between NP and MRI factors. 
Third, the AUCs only shrank slightly in the leave-one- 
out cross-validation analyses, indicating that all the 
observed patterns were robust. In summary, these fol-
low-up analyses illustrate that two observed patterns 
were robust in the larger baseline sample of MCI sub-
jects: NP and MRI factor scores are highly predictive of 
MCI to AD conversion, and the combination of NP and 
MRI factor scores outperformed either NP or MRI 
factor scores alone.

Last, we note some limitations of the current study. 
First, as shown in Table 1, the ADNI MCI subjects 
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overall have a high educational level: Mean years of 
education are 15.35 for MCIC subjects and 16.28 for 
MCINC subjects. Thus, the average ADNI subject com-
pleted or nearly completed an undergraduate degree, 
which is not nationally representative. The high educa-
tional level is potentially concerning as more years of 
education are associated with more cognitive reserve 
and lower risk of AD (Sando et al., 2008; Stern, 2012). 
A broader range of variables might be reliable predictors 
of AD conversion in a nationally representative sample. 
To provide some control of the possible effects of edu-
cation level, we included education level as a covariate in 
all our logistic regression models.

Second, we only analyzed ADNI data that were col-
lected during the first 24 months. It is conceivable that 
some MCIC subjects in our current sample eventually 
convert to AD later. In that case, it is possible that the 
latent factor structures and the predictive power of 
latent factors can be different for MCI subjects with 
slower conversion to AD. Therefore, it is recommended 
that the current findings should be validated with 
a longer follow-up interval.

Third, it remains an open question whether our 
findings hold when an alternative definition of AD is 
applied. The ADNI diagnostic criteria, as described in 
the Method section, focus on clinical symptoms. 
Alternatively, a biological definition of AD was recently 
proposed in the updated National Institute on Aging 
and Alzheimer’s Association (NIA-AA) research frame-
work (Jack et al., 2018). In this framework, the defini-
tion of AD is based on biomarker (PET or CSF) 
evidence of both Aβ deposition and pathological tau, 
which was divorced from clinical symptoms of AD. 
However, due to the limited PET and CSF data for 
ADNI 1 subjects between baseline and the 24-month 
follow-up session, we were unable to implement the 
NIA-AA framework in the current study. Thus, further 
research is recommended to verify our findings with the 
biological definition of AD, which will be possible when 
more PET or CSF data become available in later ADNI 
phases.

Conclusion

In the current study, we found that factor scores of NP 
and MRI data were strong predictors of MCI to AD 
conversion over a 2-year interval, demonstrating that 
the latent-variable approach is a useful method for pre-
dicting MCI to AD conversion. Further, the combina-
tion of factor scores from different modalities increases 
predictive power. More explicitly, incorporating both 
NP and MRI factor scores into a single model increased 
predictive power, relative to either NP or MRI factor 

scores alone. In contrast, adding CSF factor scores did 
not increase predictive power, regardless of whether 
they were combined with factor scores for NP, MRI, or 
both. Cross-validation and follow-up analyses demon-
strated that our model results were robust and stable. 
Last, we recommend future research to validate our 
results with a longer follow-up interval and alternative 
diagnostic criteria for AD. To advance the clinical utility 
of the latent-variable approach, we also encourage 
future studies to establish clinically appropriate cutoff 
values for the latent factor scores based on large-scale 
norming data.

Notes

1. PCA and EFA are often confused with each other. 
The produced index variables are called components 
in PCA and factors in EFA. The two methods differ 
in that PCA is aimed at accounting for most var-
iance of the manifest variables without considering 
the latent structure of these variables, but EFA is 
meant to identify the number of latent variables and 
the latent structure that can explain the correlations 
between the manifest variables. Thus, PCA does not 
distinguish between the shared and unique variance 
of a manifest variable, but EFA does (Costello & 
Osborne, 2005).

2. This means that the MCI sample in ADNI is all amnes-
tic-MCI (a-MCI). Note that a-MCI is the subtype of 
MCI that is at increased risk of converting to AD 
(Petersen, 2011).

3. One subject, who was diagnosed as AD at 12 months 
but converted back to MCI at 24 months, was removed 
from the final analyses.

4. Among the 92 MCINC subjects, only 6 reverted back to 
a not-impaired diagnosis within 24 months. Thus, the 
classification of MCI is very reliable in the ADNI 1 
dataset.

5. The MRI data were acquired during a screening session, 
which occurred within 28 days of the baseline session. 
Although MRI data were also gathered during the base-
line session, the screening session data were richer, and 
hence, those data figured in our analyses.

6. We thank an anonymous reviewer for suggesting CFA 
analyses in addition to EFA analyses.

7. Modification indices are the changes in chi-squared 
values if a certain path was added or a certain constraint 
was removed.

8. Notably, all variables loaded on this factor (entorhinal 
cortex, amygdala, hippocampus, and temporal pole) are 
involved in memory consolidation (Izquierdo & 
Medina, 1993; Landi et al., 2021).

9. Neuroinflammation refers to inflammatory responses 
within the central neural system (CNS), which are trig-
gered by CNS insults, such as protein misfolding and 
aggregation. Recent evidence has suggested that exces-
sive neuroinflammation can cause neuron damage and 
contribute to deterioration in brain diseases (Calsolaro 
& Edison, 2016; Heneka et al., 2015).
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10. We followed the convention of setting the threshold at 
.5 in ROC analyses throughout the paper. Please note 
that the threshold can be adjusted to improve sensitivity 
or specificity at a relative cost to each other.

11. All p values of the DeLong’ tests were corrected for 
multiple comparisons using the Benjamini-Hochberg 
procedure (Benjamini & Hochberg, 1995).

12. We thank an anonymous reviewer for suggesting addi-
tional analyses based on the Jak/Bondi criteria (Bondi 
et al., 2014).

13. Again, one subject, who was diagnosed as AD at 
12 months but converted back to MCI at 24 months, 
was removed from the final analyses.
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Appendix A

Methods for Additional Analyses with the 99 ADNI 1 
Subjects Reclassified Based on the Jak/Bondi Criteria

According to Bondi et al. (2014), the Jak/Bondi criteria were 
based on six measures in the ADNI NP battery, separately for 
three cognitive domains: Categorical Fluency and Boston 
Naming Test for the language domain, Trial Making Tests 
Parts A and B for the speed/executive function domain, and 
RAVLT delayed recall and recognition for the memory 
domain. Subjects were classified as MCI if they had (1) scores 
> 1 SD below the age-corrected normative mean on both tests 
in at least one cognitive domain; (2) scores > 1 SD below the 
age-corrected normative mean on one test in each of the three 
cognitive domains; or (3) scores = 9 on the Functional 
Assessment Questionnaire (FAQ; Pfeffer et al., 1982).

To run the additional analyses with subjects classified based 
on the Jak/Bondi criteria, we referred to Bondi et al.’s (2014) 
Supplementary Materials, in which ADNI normal and MCI 
subjects were already reclassified. Here, 234 ADNI 1 subjects 
were classified as MCI based on the Jak/Bondi criteria at 
baseline. Because EFA and CFA factor scores produced very 
similar results for the 160-subject sample classified based on 
the ADNI criteria, we only conducted EFAs in the follow-up 
analyses. We included all the 234 subjects in the EFAs of NP 
predictors and of MRI predictors. However, because CSF data 
were only available for 113 out of 234 MCI subjects, the EFA 

of CSF predictors was restricted to those subjects. The factor 
solutions for the three EFAs were the same as for the 160 MCI 
subjects classified based on the ADNI criteria. The logistic 
regressions using EFA factor scores as predictors were 
restricted to the baseline MCI subjects for whom NP, MRI, 
and CSF data were available for baseline and conversion 
statuses were identifiable for the following 24 months 
(N = 99).13 These subjects were split into two subgroups: 
MCIC (N = 46) and MCINC (N = 53).

Appendix B

Results for Follow-Up Analyses with the 192 ADNI 1 
Subjects Reclassified Based on the Jak/Bondi Criteria 

We reran the logistic regressions with only NP and MRI 
EFA factors for the 192 MCI subjects (including 108 MCIC 
subjects and 84 MCINC subjects) who were diagnosed with 
the Jak/Bondi criteria. The regression results (see Table S4 
and Figure S6 in the Supplementary Materials) were simi-
lar to the results reported for the 319-subject sample 
classified based on the ADNI criteria. The AUCs for NP, 
MRI, and NP + MRI were .78, .78 and .83, respectively. 
Most important, the Delong’s tests revealed that NP and 
MRI factors did not differ in AUCs, but NP + MRI 
produced larger AUC than NP factors alone (z = 2.33, 
p = .020) and MRI factors alone (z = 2.21, p = .020).
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